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Abstract 

The transport sector generates about 14% of global greenhouse gas (GHG) emissions and 
about 25% of GHG emissions in the EU. Contrary to other relevant economic sectors, 
emissions produced by transport are still growing. The need for rapid reduction of GHG 
emissions, particularly those related to CO2, has become imperative.. To achieve this 
objective, several approaches were adopted such as alternative technologies, sustainable 
community changes, or changes in driving behavior might be the future solutions. Another 
possible approach is to reduce the vehicle miles of traveled (VMT). The paper addresses the 
concept of VMT reduction, based on transport optimization approach and 3D GIS 
technology. The proposed approach has been tested for the case of School Bus Routing 
Problem (SBRP). The paper discusses working framework of the applied optimization 
algorithms. For computation of  the CO2 emission, two different approaches have been used. 
The algorithm for playing different scenarios for average fuel consumption of vehicles of 
transport fleet has also been developed for the optimized case. The results show that the 
optimization of bus stops, vehicle routes and driving schedules can significantly reduce the 
VMT and consequently  also the corresponding CO2 emissions. 

Keywords 
Transport optimization;Heuristic approach;Vehicle Miles Traveled;CO2 emissions; School 
Bus Routing Problem; Three-dimensional (3D) Geographic Information Systems. 

 Introduction  
Energy is one of the priorities in the world today. Significant  work is being already done on 
the ways to improve energy production and to address many possible solutions to this global 
issue. Environmental degradation, coupled with various economic and social problems, has 
led many nations to start producing energy through resources such as sunlight, wind, waves, 
geothermal energy, water etc. Non-renewable energy sources are still considered as a 
traditional way of producing energy, but the governments around the world are actively 
trying to increase the share of clean energy production to reduce existing thermal power 
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plants, which largely contribute to the CO2 emissions into the atmosphere. Fossil fuels are 
the primary source of electricity production today. Unfortunately, fossil fuels are also major 
pollutants of the environment. The burning of fossil fuels releases substantial amounts of 
CO2, which is one of the gases that contribute most to climate change in the form of creating 
a so-called greenhouse effect and global warming. 

 The global emissions 
The global greenhouse gas (GHG) emissions have grown up significantly since the pre-

industrial era estimated an increase of 70% between the years 1970 and 2004 (Le Quéré et al., 
2018; Metz et al., 2007). The human activities are also guilty for such a massive increase of 
GHGs emissions and a detected intensification in atmospheric GHG concentrations. The 
distributions of global GHG emissions concerning the type of gas and concerning the 
economic activities are shown for the year 2010 (EPA, 2019)and for the year 2004(EPA, 
2014) in Figure 1 & 2 respectively as below:  

 

 
Figure 1: The distribution of global GHG emissions concerning the type of gas and 

economic activities (for the year 2010) 
 
As can be seen from figures 1 and 2, the transportation sector is one of the massive 

generators of GHG emissions (about 14% in 2010 and 13.1% in 2004). Moreover, it is 
detected as one of the few economic sectors, where the emissions are still 
mounting(Chapman, 2007). Hence, objectives about reducing the GHG emissions generated 
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by the transport, particularly those related to CO2, are on the top list of priorities all over the 
world.  

 

 
Figure 2: The distribution of global GHG emissions concerning the type of gas and 

economic activities (for the year 2004) 
A range of policies, related to climate change, energy security, and sustainable development, 
have been conducted for different economic sectors in many countries to efficiently respond 
to the phenomena of escalation of global GHG emissions. Unfortunately, these measures are 
still not large enough to counteract the global increase in GHG emissions. With current 
policies about climate change mitigation, the global emissions will continue to grow in the 
next few decades (Le Quéré et al., 2018; Metz et al., 2007).  

The emissions in the European Union 
Regarding the European Union, the comparison of the distribution of GHG emissions (for 

years 1990 and 2017) with respect to the type of economic sector is shown in figure 3 (EEA, 
2019b). As it can be seen the transport sector was responsible for around a 25% of GHG 
emissions in 2017 meaning that it is the second principal generator of emissions, immediately 
after the fuel combustion and fugitive emissions from fuels (without transport – about 54%). 
Even more worrying fact is that the increase for 10% of transport emissions happened in just 
27 years (from 15% in 1990 to 25% in 2017) (EEA, 2019b).The emissions generated by 
transport are still growing in the EU, similarly as in the global case (the entire world) and 
5)(ECCA, 2014; EEA, 2019a, 2019c). The emissions from other economic sectors have on 
average decreased for about 10% between years 1990 and 2008and more than 20% between 
years 1990 and 2017 (ECCA, 2014; EEA, 2019a, 2019c). The emissions related to the 
transport sector have significantly increased in the same period, as can be seen from the rising 
trends of all types of transport as shown in figure 4.  

The paper addresses the conception of VMT reduction, based on transport optimization 
approach and 3D GIS technology.  
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Figure 3: The comparison of the distribution of GHG emissions (for years 1990 and 

2017) with respect to the type of economic sector 

 
Figure 4: The normed time series of GHG emissions (between years 1990 and 2017) with 

respect to the type of economic sector (different kinds of transport, all sectors, electricity, and 
heat). 



International Journal of Project & Technology Management ,Volume 2, Issue 1, March 2020  

9 
 

 

 
Figure 5: The normed time series of GHG emissions (between years 1990 and 2014) with 

respect to the type of economic sector. 
Figure 6 shows the distribution of GHG emissions in the EU transport sector regarding 

the mode of transport for the year 2007(ECCA, 2014). It can be seen that about 68% of those 
emissions are related to road transport. The latter has significantly increased in the time 
period from 1990 to 2007 since a personal and freight transport had enormously increased.  

 
Figure 6: The distribution of GHG emissions in the EU transport sector regarding the 

mode of transport for the year 2007 
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The proposed optimization framework for solving the SBRP problem and estimating 
the CO2 emissions 

This work is focused on the reduction of CO2 emissions, which are the consequence 
of road transport. The work represents a continuation of the research, whose earlier stages 
were presented in severalprevious papers of the authors of the present paper (e.g., (Dragan et 
al., 2011; Dragan et al., 2012; Kramberger et al., 2013)). Our approach is grounded on the 
optimization of road transport to reduce the “Vehicle Miles Traveled” (VMT), which might in 
principle also cause the reduction of CO2 emissions. The approach uses diverse heuristic 
techniques, which are conducted via several stages. The application of three-dimensional 
Geographical Information System (3D GIS) is also used, which enables the framework with 
3D geographical data for the purpose of various management and analysis tasks on these data 
(Heywood et al., 2011). 

In order to demonstrate, how the reduction of VMT, based on optimization, can also 
lead to a significant reduction of CO2 emissions, the case study of the well-known School 
Bus Routing Problem (SBRP) (Park and Kim, 2010) has been applied and conducted for one 
Slovenian municipality, named the Municipality of Laško(from here on MOL). In this study, 
the optimal allocation of bus stops (BS) was applied as a first step. Then the optimal driving 
routes, the optimal driving fleet and the optimal driving schedules were calculated. In the 
next step, the calculation of VMT for the non-optimized and for the optimized situation was 
done. Also, the CO2 emissions in both situations were estimated by means of two different 
approaches:the Emissions’ Factor Method (EFM) and the Fuel Consumption Method 
(FCM))(Anable et al., 1997). In the final stage, the algorithm for playing the different 
scenarios for average fuel consumption of vehicles of the transport fleet was developed and 
conducted for the optimized situationby employing the FCM method. Since the algorithms 
for optimal allocation of bus stops and determination of optimal optimal driving routes, 
driving fleet and driving schedules have been already more in-depth presented in our 
previous reports (see (Dragan et al., 2011; Dragan et al., 2012; Dragan et al., 2016; 
Kramberger et al., 2013)), the major emphasis of this paper is dedicated to the 
aforementioned calculations of CO2 emissions. 

The simulated results show that the optimization of BS, vehicle routes and driving 
schedules can significantly reduce the VMT and consequently, the corresponding CO2 
emissions if compared to the un-optimized situation.Even more, the comparison of estimated 
optimized results of all scenarios with the non-optimized situation has confirmed the 
promising performance of the developed mechanism and convinced us that the VMT 
reduction, based on the optimization, can truly contribute to the significant decrease of the 
CO2 emissions.  

Surprisingly, the insufficient attention has been dedicated so far to the VMT reduction 
based on transport optimization, as it was detected by means of careful examination of the 
existing literature (Kramberger et al., 2013). Since the identified gap is relatively big, we 
believe that this work might have represented some contribution to the addressed scientific 
field. Furthermore, at least to our best knowledge,we have also discovered that the developed 
algorithm for playing the different scenarios for vehicles’ average fuel consumption might 
have represented another unique contribution that could not be found in the existing 
literature.Also, except some of our previous research (Prah, Keshavarzsaleh, et al., 2018; 
Prah, Kramberger, et al., 2018), there have not been many similar reports detected that 
address an optimization based on 3D GIS data. Finally, from a practical point of view, the 
entire optimization mechanism as a part of a decision support system is successfully running 
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in theobserved municipality for several years already, while the cost savings can be measured 
in hundreds and hundreds of thousands of Euros.  

LITERATURE REVIEW 

 The measures to reduce the GHG emissions in the EU transport sector 
Since the GHG emissions (especially those from CO2) from the road transport are by 

far the most problematic, the EU governments have become focused to adopt a serious 
emission reduction measures, particularly for the road transport(EC, 2000; EPA, 2011). From 
figure 7 it can be seen that state authorities at different levels have adopted a whole set of 
regulations, strategies, policies, andmeasures to reduce the road emissions. More in-depth 
details about explaining the strategies and policies in figure 7 can be found in (Dragan et al., 
2016; Kramberger et al., 2013). 

 

Figure 7: An overview of some measures, which have been adopted in the EU for reducing 
the CO2 emissions related to road transport (the emphasis of this research is on the transport 
optimization) 

In general, the following strategies, regulations, and policies are pushed by the 
governments (Barth and Boriboonsomsin, 2014; Difiglio, 1997; Dragan et al., 2016; Heres-
Del-Valle and Niemeier, 2011; Kramberger et al., 2013; Moore et al., 2010): 

• The use of alternative technologies (more efficient vehicles, low carbon fuels, etc.),  
• The adoption of sustainable community strategies (integrated multimodal transportation, 

land use planning, etc.) 
• The increased use of public transport,  
• The behavioral changes in the driving patterns,  
• The increased application of so-called eco-driving, and so on.   
Besides the aforementioned approaches, the VMT reduction is also targeted. (Chapman, 
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2007; Difiglio and Fulton, 2000; Heres-Del-Valle and Niemeier, 2011). However, the VMT 
reduction essentially depends on the change in human behavior and travel patterns in the 
sense of increasing the use of public transport and simultaneously reducing the car travel 
(Moore et al., 2010). Furthermore, the VMT reduction also relies on long-term strategies, 
which are established according to the computer models for simulation of the impacts of 
presumed behavior, or land-use changes, on the VMT. Naturally, the reliance only on these 
computer models can lead to quite uncertain conclusions(Heres-Del-Valle and Niemeier, 
2011). 

Radical changes in human behavior would be needed to reduce the VMT and related CO2 
emissions in road transport to the desired level. On the other hand, the subtle improvements 
in traffic management systems and optimization of road transport might have been adopted to 
considerably reduce the VMT and CO2 (see shadowed block “Transport optimization” in 
figure 7, which manifests our approach). 

The reduction of the VMT and CO2, and relation to the SBRP problem  
Many authors, e.g.,(Desrosiers, 1986; Ellegood et al., 2019; Rita M. Newton and 

Thomas, 1969; Rita M Newton and Thomas, 1974; Park and Kim, 2010; Schittekat et al., 
2006)have studied the SBRP problem. A jointline of these papers is the fact that the 
optimization in principle reduces the VMT and henceforth also the transportation costs. 
Moreover, we can also suppose that the reduction of VMT reduces GHG emissions as well. It 
is true that according to the opinion of (Moore et al., 2010), the climate change policy should 
concentrate directly on reducing the GHG emissions, rather than through the use of the 
instrument of VMT reduction.  

However, on the other hand, our research investigates the optimization-based VMT 
reduction, where the context of the environmental point of view is not excluded. By other 
words, our attention is focused on the studying of the relations between the reduction of the 
VMT and the probable reduction of CO2 emissions, where we are alsopredominantly 
interested in the level of the drop in CO2 emissions. 

 The SBRP problem as a hard six-step heuristic-based combinatorial optimization 
problem 

The SBRP problem usually does not cover only the optimization of school bus 
routing, but also some other essential steps, like the bus stops’allocation, the identification of 
eligible pupil commuters, the road network design, the planning of the starting and ending 
time of lessons, etc. Generally, the SBRP can be divided into sixminor sub-problems as 
shown in figure 8 (Desrosiers, 1986). 

The scholars usually do not address all the SBRP sub-problems simultaneously, since the 
level of complexity is quite high. Although the SBRP itself embodies the unique classical 
optimization problem, its sub-problems can be classified as diversevariations of other typical 
optimization problems. For example, the sub-problem of the school vehicles’routing is very 
similar to the Vehicle Routing Problem (VRP), while the mixture of sub-problems 2 and 3 
(i.e., the allocation of BS and construction of vehicle routes) can be classified into the cluster 
of Location-Routing Problems (LRP) (Park and Kim, 2010). 

In solving the SBRP, we have to find an optimal schedule for school vehicles’ fleet, where 
every vehicle picks up the pupils at the BS and then delivers them to their schools. During the 
SBRPsolving process, the whole variety of different constraints must be usually fulfilled, 
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such as the maximum riding time of individual pupil in a vehicle, thetime window of schools, 
the maximum capacity of vehicles, etc.(Desrosiers, 1986; Park and Kim, 2010). 

 

 

Figure 8: The SBRP problem as a hard six-step heuristic-based combinatorial 
optimization problem 

In general, in most cases, we are confronted with challenging problems when we are 
trying to solve the SBRP problems. Consequently, the use of more sophisticated heuristic 
approaches is mostlynecessary. In the last two decades, there have been many heuristic 
procedures presented for the solving of SBRP problems, such as tabu search algorithms, 
genetic algorithms,simulated annealing, deterministic annealing, and many more. Further 
details about these algorithms can be investigated in works(Dragan et al., 2019; Ellegood et 
al., 2019; Park and Kim, 2010). 

THE SBRP PROBLEM IN THE ADDRESSED MUNICIPALITY OF LAŠKO 
In Slovenia, the school traffic systems are typically organized by the municipalities and 

not by the individual schools. Moreover, vehicles for school transport are frequently shared 
by multiple schools. Consequently, the adjustment of schools' opening and closing times is 
ordinarily required, and the scheduling of vehicles for multiple schools is often necessary as 
well. 

The case study addresses the use of (8+1) passenger vans, which are possessed by the 
municipality. These vehicles are on average relatively “obsolete” since the municipality 
budget is after the economic crisis in a somewhat problematic financial situation.  The MOL 
is positioned in Central Slovenia and has the sub-alpine hills, while the flat land is spreading 
along the river Savinja and its tributaries. The municipality has a quite high population 
density ( 2

69 .... 2009inhabitants yearkm
)if compared with the Slovenian average 

( 2
101 .... 2009inhabitants yearkm

). The municipal road networks are one of the most diverse 
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in the country, which means: 30 m of  roads
citizen , while the Slovenian average 

is:7 m
citizen (Horvat, 2006). The complex terrain, a large number of settlements and 

individual road segments, inadequate levels of maintenance and poor quality of construction, 
are the cause of fairly big deterioration of local roads (Horvat, 2006). 

The real data for manifestation in this study were used for the school year 2009-2010, 
which has been the last year with a none-optimized situation. At this time, the municipality 
has had the commitment to provide the services to circa 562 pupils, who had been located at 
different addresses, while the total sum of road distances had been 960 km of roads in this 
area (c.f. figure 9). The transport routes were not well organized since the vehicles have had 
to travel a lot of non-necessary additional kilometers. Moreover, the vehicles were usually 
not fully loaded, while the routes had been sometimes doubled or even tripled (Dragan et al., 
2011).In order to remove these deficiencies, the optimization of pupils’ transport had to be 
applied.  The latter had taken into consideration the design of optimal BS locations, bus 
routes, and driving schedules.  

 

Figure 9: The locations of 11 schools (little houses) and the addresses of 562 pupils (little 
circles - points) in the MOL (for the last “unoptimized” school year 2009-2010) 

THE CONCEPTUAL FRAMEWORK OF THE HEURISTIC OPTIMIZATION 
PROCEDURE AND THE CONTEXT OF THE ENTIRE RESEARCH   

The conceptual framework of the designed heuristic optimization procedure 
In this section, the conceptual framework of the heuristic optimization procedure, which 

was applied to solve the SBRP problem in the observed municipality, is introduced(c.f. figure 
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10). As it can be seen in figure 10, the characteristics of the road network, the bus stops’ 
candidates data points, and the residential addresses of the pupils must be injected as the main 
inputs into the optimization process. The road data point shave been generated using 300 
meters’ segmentation of the road network by means of  GIS technology, according to the 
recommendation of the observed MOL. After the initial setup, the four-stage optimization 
procedure that comprises four algorithms had been executed (see figure 10).  Thus, the main 
problem has been divided into four sub-problems, which were processed one after another. 

During the first stage (ALGORITHM 1), the initial roads data have been reduced to 
decrease the potential candidate road points for optimal BS to an acceptable level; otherwise, 
the serious computational problems might have appeared.  

During the second stage (ALGORITHM 2), the Monte Carlo simulation-based 
optimization method has been deployed to determine the optimal number and optimal 
location of bus stops based on the further reduced set of candidate road points (Dragan et al., 
2011).  

During the third stage (ALGORITHM 3), the optimal bus routes, driving schedules and 
driving fleet have been calculated using the well-known Arc Logistics software and ArcGIS 
extension Network Analysis(ESRI ArcGIS) (Dragan et al., 2012; Prasertsri and Kilmer, 2003; 
Weigel and Cao, 1999). 

Moreover, while executing ALGORITHM 3, the estimated CO2 emissions havealso 
been calculated based on the calculated VMT for the simulated optimized case (Kramberger 
et al., 2013). For this purpose, the Emissions’ Factor Method and the Fuel Consumption 
Method were applied. In the final stage, ALGORITHM 4 for playing the different scenarios 
for average fuel consumption of vehicles of the transport fleet was executed for the optimized 
situation by employing the FCM method.  

The final results thus include: the optimal BS, the optimal routes of vehicles, the 
optimal driving schedules, the optimal driving fleet, and, the amount of VMT and produced 
CO2 emissions for every single vehicle and the entire fleet. To convince ourselves that the 
optimized results truly lead to the lowered values of CO2 emissions, the comparison between 
the un-optimized (real) and optimized (simulated) case was also processed. 
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Figure 10: The conceptual framework of the used heuristic optimization procedure 

The context of the entire research and relations with the previous studies 

The work presented in this paper is a logical continuation of our previous 
research(Dragan et al., 2019; Dragan et al., 2011; Dragan et al., 2012; Dragan et al., 2016; 
Kramberger et al., 2013; Prah, Keshavarzsaleh, et al., 2018; Prah, Kramberger, et al., 2018). 
The evolution of entire research with the time progress is shown in figure 11 (see also figure 
10). The framework for solving the basic SBRP problem was established almost ten years 
ago (block A). At that time, the entire mechanism was also gradually implemented and tested 
in the observed MOL (block B). The latter included the physical implementation of identified 
optimal BS with some minor modifications due to terrain and road network characteristics in 
order to create a realistic bus stops’ topology and prevent dangerous situations when pupils 
are approaching the assigned BS. Also, the drivers of the optimized fleet have received the 
optimal schedules and routes that must be processed every day. During the transition from 
un-optimized to the optimized state, the real results under the optimal conditions have more 
or less confirmed the hypothesized promising simulated optimal results. The latter means that 
the optimization of the school bus transport had been quite successful in real practice as well, 
while the related costs and VMT dropped significantly. 

Since the situation slightly changes every year due to the arrival of the first-grade pupils 
and departures of the last-grade pupils, the recalibration of the entire system is needed every 
year (see block C). The results show that the physical locations of the BS are more or less 
stable and time-independent due to the mostly unchanged demographical distribution of the 
population dispersed throughout the municipality.  

After the success of the implementation of our system in the Laško municipality, the 
neighboring municipalities have also become interested in solving their SBRP problems. As a 
result, the entire SBRP solving system was developed and implemented in the Municipality 
of Žalec (block D) as well, where the complexity of the problem was even higher (block E) 
(see (Dragan et al., 2019)). Later on, further research has gone in several different directions, 
mostly dedicated to the prototypal improvements and modifications of the existing systems 
(e.g., a deployment of data clustering, transition to 3D GIS – see block F), expansion to the 
other municipalities (see block D), and research related to the development of different 
emission models (block H). Moreover, the 2D and 3D GIS results were also compared (block 
G), while in this paper, the main emphasis is on ALGORITHM 4from figure 10 (block I), as 
a more straightforward competitive framework that can challenge the results of the much 
more complex modified MEET macroscopic emission model integrated into the Monte Carlo 
scenario-playing framework (block J) (see (Dragan et al., 2016)).  

 

The methodology to solve the SBRP problem and estimate the CO2 
emissions 

The main algorithms to solve the SBRP problem  
In this section, we only briefly discuss some significant steps of the first three 

algorithms from figure 10. The last one, i.e., ALGORITHM 4, will be more in-depth 
presented later in this paper. The more in-depth details about earlier versions of these 
algorithms can be found in some of our previous reports (e.g., (Dragan et al., 2011; 
Kramberger et al., 2013)). 
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Figure 11: The evolution of entire research with the time progress 

 

The algorithm for the initial road data reduction (ALGORITHM 1) 
 

In order to solve the sub-problem of optimal bus stops’ allocation, the initial road data 
reduction must be first executed to decrease an enormous number of all possible candidate 
points obtained by the GIS segmentation (see figure 12 and ALGORITHM 1from figure 10). 
By using this algorithm, the reasonably decreased number of candidate road points can be 
accomplished. 

As it turns out, ALGORITHM 1 in figure 12 needs the virtual circles of prescribed 
radium r, which must be created for each road point. Then the following two heuristic rules 
are performed: 

1.) If the neighboring road points ( ) ( ), 1p i p i + are too close to each other, a dilution of them 
should be conducted in the case that their mutual distance is: ( ) ( ), 1 rd p i p i r r+ < ⋅   , where rr  
is a reduction rate coefficient applied for the practical reasons.  

2.) If the observed road point is too far (more than r) from any of pupils’ addresses points, it 
must be excluded from the further procedure. 
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Figure 12: ALGORITHM 1 for the initial road data reduction 

 

The algorithm for the optimal allocation of bus stops (ALGORITHM 2) 

For optimal bus stops’ allocation belonging to the group of Maximum location 
covering problems (MLCP), many methods for solving facility location problems have been 
developed, e.g.,(Church and ReVelle, 1974; Corrêa et al., 2007; Corrêa et al., 2009; Correia 
and da Gama, 2015; Desrosiers, 1986). Contrariwise, in this paper, the optimization based on 
the Monte Carlo simulation method (MCSM) (c.f. figure 13) had been deployed to solve the 
allocation problem(Dragan et al., 2011; Kramberger et al., 2013). Although our algorithm is 
likely not so sophisticated as some other random search-based methods for solving the 
allocation problems (e.g., the Genetic Algorithms or Ant Colony approach(Li and Yeh, 2005; 
Lingmei et al., 2014)), it still gives quite acceptable allocation results.  

In order to effectively use ALGORITHM 2 in figure 13, the observed municipality’s 
surface must be divided into an adequate number of sub-sectors. Furthermore, it must be 
examined, which BS candidates provide service to the biggest possible number of pupils for 
each sub-sector. It must also be taken into consideration, that the minimal walking distance of 
the pupils to the closest bus stop should not exceed the prescribed radium r. This way, the 
“covered” pupils can be appropriately assigned to the corresponding nearest bus stops. An 
additional criterion is that the number of “uncovered” (unassigned) pupils (those who exceed 
the radium r) is as low as possible(Dragan et al., 2011).  

The algorithm is designed in the sense that an adequate compromise is found between 
the highest possible number of covered pupils and the lowest possible number of allocated 
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BS. In order to avoid the optimal number of BS being rising beyond any reasonable limit, the 
algorithm is constructed in the manner to provide the service within the radium rto the 
majority of pupils. Contrariwise, the unassigned pupils are addressed individually meaning 
that they are assigned to the closest calculated bus stop (in these cases the walking distance is 
bigger than radium r).If the distance to the nearest BS for any of these pupils is too big, they 
might be picked up individually. When the MCSM algorithm is completely finished, the 
positions of the optimal BS are the final results (for further details see (Dragan et al., 2011)). 

 

 

Figure 13: The MCSM algorithm for the optimal bus stops’ allocation (ALGORITHM 2) 
The algorithm for the computation of optimal bus routes, driving schedules, driving fleet, VMT, 
and CO2 (ALGORITHM 3) 

For the purpose of optimization of bus routes, driving schedules, and driving fleet, the 
ESRI Arc GIS software, i.e., its Arc Logistics module has been applied (see figure 14). The 
latter is a stand-alone end-user application primarily designed for solving the vehicle routing 
problems (VRP). More information about all algorithms, which are built in Arc Logistics, can 
be obtained in the literature (Prasertsri and Kilmer, 2003; Weigel and Cao, 1999).  

In the MOL, all schools begin with lessons at 8.00, so there is no flexibility about the 
possible adjustment of schools’ starting time. The system of transport operations is organized 
in such a manner that the drivers of vans start their routes from their home locations. Thus, 
these additional kilometers must be also considered when ALGORITHM 3in figure 14 
processes its computations. 
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In the sequel, it might be appropriate to explain some key characteristics of the Arc 
Logistics optimization mechanism. The criterion function for the derivation of optimal 
driving routes can be calculated with respect to the traveling distance in kilometers, or travel 
time. To do this, the mechanism creates different combinations of scenarios regarding the 
outcomes of the transportation process according to the different routes, different driving 
schedules and different loads of the driving fleet (Prasertsri and Kilmer, 2003; Weigel and 
Cao, 1999).  

While executing these scenarios, the travel time in every scenario is calculated based 
on the known distances and the speed of the vehicles. Namely, in the model of the road 
network, the length and average (allowed) speed are known for each road section. 
Consequently, we can calculate the travel time for each road segment, needed for the crossing 
of this segment. Accordingly, the travel time of vehicles is indirectly considered in the 
optimization algorithm. When the procedure ends its calculations, the Arc Logistics returns 
the best scenario as a final result. The latter corresponds to those optimal driving routes, 
driving schedules, and driving fleet, for which the total traveling distance or travel time is the 
lowest possible. From observing figure 14 can be noticed, that the ALGORITHM 3 also 
calculates the VMT and the CO2 emissions, related to the final results of the Arc Logistics 
procedure.  

 

Figure 14: ALGORITHM 3 for the computation of optimal driving routes, driving schedules, 
driving fleet, VMT, and CO2 

The framework for the calculation and analysis of estimated CO2 emissions 
There exists a variety of approaches for modelingCO2 emissions that possess different 
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levels of complexity (for details see (Dragan et al., 2016)). These approaches have more or 
fewer strengths, but also some limitations and weaknesses (Barth et al., 1996; Cappiello, 
2002). For the calculation of the CO2 emissions profiles, as we have already mentioned in the 
introduction, the two basic approaches are usually adopted (Anable et al., 1997):  

• the Fuel Consumption Method (FCM), and  
• the VMT approach based on the Emissions Factors’ method (EFM). 
 

The first approach is based on the estimation of emissions from the fuel consumed 
(represented by fuel sold), while the second approach is based on the distance traveled by the 
vehicles’ type. Thus, contrariwise to the work (Dragan et al., 2016), where quite a 
complicated approach (MEET model integrated into the MC framework) was used for 
estimating the CO2 emissions, we have applied in this paper relatively more straightforward 
FCM and EFM approaches a simpler alternative. Such an alternative might not provide so 
accurate CO2 estimation as in the case of the MEET model. However, on the other side, due 
to its relative simplicity, it enables a quick, yet rough, estimation of the CO2 emissions. 
 

 

5.2.1Thedescription of theVMT approach based on theEmissions Factors’ 
methodfortheestimation of CO2 emissions 

 

This method uses a single emissions rate for each pollutant and vehicle category, which is 
dependent on the types of vehicle operation. The latter can be expressed in terms of the 
volume of emissions produced per kilometer traveled. The CO2 emissions can be estimated 
by the following  

 

simple form(Anable et al., 1997): 

 

( )( ) ( ) ( )( )

( )

( ) ( )( )

3 2
2 2

2 _ 2 2 2
1

10 ,

1,2,...,

CO

n

CO TOT CO
j

g COE j kg CO EMF j d j kmkm

j n vehicle index

E kg CO E j kg CO

−

=

 = ⋅ ⋅ 
 

=

=∑

 

 

 

(1) 

 

where ( )2COE j are carbon dioxide emissions of the j-th vehicle, ( )EMF j  is the VMT based 

emission factor of the j-th vehicle, ( )d j  is the total distance of the j-th vehicle, traveled in 
kilometers, and 2 _CO TOTE  are the total CO2 emissions of all vehicles together. In our case, the 
VMT based emission factors had taken the values based on guidelines(IPCC, 1996, 2006), or 
they were provided by the vehicles’ manufacturers (Kramberger et al., 2013).  
 

Thedescription of thefuelconsumptionapproachfortheestimation of CO2 emissions 

The fuel consumption approach calculates the total fuel consumption from each 
vehicle used by combining the distance figures for each road category with the corresponding 
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official statistics for 100
liters

km (Anable et al., 1997). According to the sources (EEA, 2012) 

and (IPCC, 2006), the CO2 emissions are most adequately calculated on the basis of the type 
and amount of the fuel combusted, and with respect to its carbon content (IPCC, 2006).  

The CO2 emissions calculated by using the fuel consumption approach can be 
estimated as follows (IPCC, 2006): 

( )( ) ( ) ( )( )

( )

( ) ( )( )

2

2
2

2 _ 2 2 2
1

,

1, 2,...,

CO

n

CO TOT CO
j

g COE j kg CO EF j FC j kg fuel
kg fuel

j n vehicle index

E kg CO E j kg CO
=

 
= ⋅ 

 
=

=∑

 

 

 

 

(2) 

where ( )2COE j are carbon dioxide emissions of the j-th vehicle, ( )EF j  is the fuel 
consumption based emission factor of the j-th vehicle, ( )FC j  is the total fuel consumption of 
the j-th vehicle, and 2 _CO TOTE  are the total CO2 emissions of all vehicles together. In our case, 
the fuel consumption based emission factors had been also taken from the guidelines (IPCC, 
1996, 2006). 

Since we did not have the access to the information about the FC of the vehicles, i.e.,  
we could not get the insight into the list of fueling invoices, we had to find another way to 
estimate vehicles’ consumptions. We have chosen a simplified approach by applying the 
multiplication between the vehicle’s average consumption per km, obtained from the (EEA, 
2012), with the VMT value of the vehicle (in km).  This way, the following expression for the 
FC of the j-th vehicle had been formed:    

( )( ) ( ) ( )( ) ( ), 1, 2,...,kg fuelFC j kg fuel AFC j VMT j km j n vehicle index
km

 = ⋅ = 
 

 
 

(3) 

where ( )AFC j is the average fuel consumption of the j-th vehicle, and the meaning of the 

( )VMT j  is the same as for the distance ( )d j in the expression (1). The expression for CO2 
emissions then takes the form: 
 

( )( ) ( ) ( ) ( )( )
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( ) ( ) ( ) ( )( )
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(4) 

Total fuel consumption for all vehicles can be expressed by: 
 

( ) ( )( ) ( ) ( )( )
1 1

n n

TOT
j j

kg fuelFC kg FC j kg AFC j VMT j km
km= =

 = = ⋅ 
 

∑ ∑  
 

(5) 
 

If the emission factor is approximately equal for all the vehicles ( ( )EF j EF= ), we can 
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write: 

( ) ( ) ( )( )

( )
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2 _ 2

1
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n

CO TOT
j

TOT

g CO kg fuelE kg CO EF AFC j VMT j km
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kg fuel
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   = ⋅ ⋅ =   
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 

∑
 

 

(6) 

NUMERICAL RESULTS 
The ALGORITHM1 for the initial road data reduction and the ALGORITHM 2 for the 

allocation of BS were implemented in MATLAB, while the ALGORITHM 3 was modeled 
as a VRP problem with Time Windows and was solved by aforementioned Arc Logistics 
software. 

Results for the optimal bus stops’ allocation (ALGORITHMS 1 and 2) 
Figure 15 shows the results achieved for the optimal bus stops’ allocation. The initial 

number of 14295 BS candidates was reduced to a more acceptable number of 1768 
candidates by using ALGORITHM 1 (the initial road data reduction – see figures 10 and 
12). In the next step, 56 optimal BS were extracted from the reduced set of 1768 candidates 
by using ALGORITHM 2 (MCSM algorithm for the optimal BS allocation – see figures 10 
and 13). Since only 12 pupils of total 562 remained “uncovered” (with a walking distance 

WDd r> ), the MCSM has managed to “cover” 97.8% of all pupils (with a walking distance 

WDd r≤ ).Furthermore, since the walking distances to the nearest BS, of uncovered pupils, are 
only a few hundred meters bigger than the prescribed radium r, their individual treatment 
should not represent a bigger problem. 

 

The reduction of VMT achieved by means of optimization (ALGORITHM 3) 
 

When ALGORITHM 3 from figure 14 is completed, the overall optimization 
procedure from figure 10 is entirely finished. During executing ALGORITHM 3, the total 
distance (i.e. the VMT) of each vehicle per year was calculated for the case of the optimal 
"simulated" conditions. As it was already confirmed in some of our previous research (e.g., a 
hypothetical study (Prah, Kramberger, et al., 2018)), the average driving distances are in the 
case of 3D GIS for circa 4% longer than in the case of 2D GIS.  In the next step,  the optimal 
simulated distance has been compared with the real distance for the same year, when the 
optimization was not conducted yet. For the real unoptimized situation, the information about 
the distances traveled for each vehicle in one day was given by the municipal administration. 
On the other hand, the optimized (simulated) distances had been calculated by Arc Logistics. 
As aforementioned, the real data for the manifestation of comparison purposes were used for 
the reference school year 2009-2010, which was the last year with out an optimized situation. 
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Figure 15: Results for the optimal bus stops’ allocation (56 optimal BS) 
Table 1illustrates the comparison of the total number of km per vehicle and the entire 

fleet for the cases without and with optimization, respectively. The comparison for the 
reference school year indicates that a significant reduction in the total driving distance had 
been achieved as a result of optimization (375232 km without optimization and 292340 km 
with optimization). On a yearly basis, this means a decline for 82894kilometers (22% 
decrease in the total VMT). Moreover, by using the optimization, the VMT for the individual 
vehicles had been also separately reduced, except for the vehicle 10.  

 Without 
optimization 

With 
optimization 

Vehicle 

number 

Distance traveled 

[km/year] 

Distance traveled 

[km/year] 

1 47750.5 34663.5 

2 16044.1 11759.2 
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3 32546.6 29597.0 

4 45840.7 30809.1 

5 42020.0 29101.5 

6 56155.0 39649.6 

7 36745.2 33014.2 

8 49660.3 38655.6 

9 30713.9 26101.4 

10 17755.7 18990.6 

Total 375232 292340 

 

Table 1: The distance traveled in km
year

 
 
 

 for the vehicles under the un-optimized (real) situation, 

and under the optimized (simulated) situation (the reference school year) 

The significant improvement in the case of the optimized situation, when compared to 
the unoptimized one, can be also illustrated graphically as depicted in figure 16. 
 

 

Figure16: The graphical illustration of the total distance traveled in km
year

 
 
 

 for the un-optimized 

(real) situation and for the optimized (simulated) situation (the reference school year ) 

6.3The application of the Emissions factor method for the case of real data 
 

For the purpose of the estimation of CO2emissions, the emissions factor method is 
used at first. Thus, the expression (1) is applied to calculate the estimated emissions, which 
gives us the results, shown in table 2. These results were calculated on the basis of the VMT 
presented in table 1, and based on the emission factors, obtained from(IPCC, 1996, 2006), or 
official web pages of the vehicles' manufacturers.   
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From table 2 it can be seen that the reduction of total VMT in the optimized case also 
causes the considerably lower values of CO2 emissions, if they are compared with the values 
in the unoptimized case. Thus, we have in total only66861.1 kg

year
 
 
 

 emissions for the 

optimized case, instead of 86052.2 kg
year

 
 
 

 for the unoptimized case.  The latter means about 

19.2 tonnes/year of CO2 emissions’ decrease, which represents a 22.3 % reduction in 
pollution per one year (see figure 17).  
 

 Without optimization With optimization 

Vehicle 

number 

Emission 

factor [g/km] 
Distance 
travelled[km/year] 

CO2 emission 

[kg/year] 

Distance travelled 

[km/year] 

CO2 emission 

[kg/year] 

1 217 47750.5 10361.9 34663.5 7521.8 

2 221 16044.1 3545.8 11759.2 2598.8    

3 221 32546.6 7192.8 29597.0 6541.0 

4 167 45840.7 7655.4 30809.1 5145.1 

5 280 42020.0 11765.6 29101.5 8148.2 

6 280 56155.0 15723.4 39649.6 11102.0 

7 221 36745.2 8120.7 33014.2 7296.1 

8 221 49660.3 10974.9 38655.6 8542.8 

9 221 30713.9 6787.8 26101.4 5768.4 

10 221 17755.7 3924.0 18990.6 4196.8 

Total / 375232.0 86052.2 292340.0 66861.1 

 

Table 2: The results of the emissions factor method: estimated CO2 emissions in ( )kg
year

 for the 

vehicles under the un-optimized situation, and under the optimized situation (reference school 
year) 
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Figure 17: The presentation of the total estimated CO2 emissions in ( )kg
year

 under the un-

optimized situation, and under the optimized situation (the emissions' factor method, reference 
school year) 
 

The application of the Fuel consumption method for the case of real data 
 

The Fuel consumption method is the next method, which has been used for the 
calculation of theCO2 emissions. In this case, we have applied the expressions (2) and (3) in 
order to calculate the estimated emissions. The results of these calculations are presented in 
table 3. The results for the fuel consumption of the individual vehicles (c.f. expression (3)) 
were estimated on the basis of the VMT values from table 1, and based on the average fuel 
consumption factors, obtained from the source(EEA, 2012). 

Since all the vehicles (vans) can be classified into the class of the »European Diesel 
Light Duty Vehicles«, the equal AFC factor 0.08 was taken for all of 
them: ( ) 0.08, 1,2,...,10kg fuelAFC j j

km
  = = 
 

. When the values of the fuel consumptions were 

appropriately estimated by the use of expression (3), they were inserted into the expression 
(2), where the emission factors, obtained from(IPCC, 1996, 2006), had been also applied. 
Due to the similarity of vehicles and their relative obsolescence, the equal EF factor 3140 

( ( ) 2 3140, 1,2,...,10g COEF j j
kg fuel

 
= = 

 
) was taken for all of the vehicles of the driving fleet.  

 

Vehicle 

Without optimization With optimization 

Fuel 
consumption
[kg/year] 

CO2 
emissions
[kg/year] 

Fuel 
consumption[
kg/year] 

CO2 
emissions
[kg/year] 

1 3820,0 11994,9 2772,4 8707,2 

2 1283,5 4030,3 940,6 2954,1 

3 2603,7 8175,7 2367,7 7435,4 

4 3667,3 11515,2 2464,9 7739,3 

5 3361,6 10555,4 2328,5 7310,0 

6 4492,4 14106,1 3171,9 9960,0 

7 2939,6 9230,4 2641,5 8293,2 

8 3972,8 12474,7 3091,5 9710,3 

9 2457,1 7715,3 2087,8 6557,2 

10 1420,5 4460,2 1519,8 4770,4 

Total 30018,6 94257,3 23387,0 73436,0 

 

Table 3: The results of the fuel consumption method: estimated CO2 emissions in ( )kg
year

 for 

the vehicles under the un-optimized situation, and under the optimized situation (reference 
school year) 
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The conclusions, which are based on the investigation of table 3, can be treated 
similarly, as it was for the case of emissions’ factor method. Namely, from table 3 it is 
evident that the estimated fuel consumptions of the vehicles and the corresponding CO2 
emissions are significantly lower in the optimized case if compared with the values in the un-
optimized case. For instance, we have in total only 73436,0 kg

year
 
 
 

 emissions for the 

optimized case, instead of 94257.3 kg
year

 
 
 

 for the unoptimized case. The latter means about 

20.8 tonnes/year of CO2 emissions’ decrease, which represents a 22.08 % reduction in 
pollution per one year (see figure 18).  

Naturally, there are some differences in the results of both applied methods for the 
emissions’ estimation, since they are based on different methodologies. However, the 
common thread of both methods is that the estimation of CO2 decrease (in values or %) is 
quite similar.  

 
Figure 18: Total estimated fuel consumptions and CO2 emissions in ( )kg

year
 for the un-

optimized and for the optimized situation (fuel consumption method, reference  school) 
 

Playing scenarios for different AFC factors of the vehicles in the optimized 
case(fuel consumption method) 
 

If the equal fixed values 0.08 kg fuelAFC
km

 =  
 

 and 2 23140g CO g COEF
kg fuel kg fuel

   
=   

   
are 

taken for all vehicles, the expression (5) takes the form (n = 10): 
 

( ) ( )( )
10

1
0.08TOT

j

kg fuelFC kg VMT j km
km =

 = ⋅ 
 

∑  
 

(7) 
 

while the expression (6) takes the form: 
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( ) ( )2
2 _ 2 3140CO TOT TOT

g COE kg CO FC kg fuel
kg fuel

 
= ⋅ 

 
 

 

(8) 
 

These expressions for the un-optimized case are (see tables 1 and 3): 
 

( )

( ) 2
2 _ 2 2

0.08 375232.0 30018.56

3140 30018.56 94257.3

TOT

CO TOT

kg fuelFC kg km kg fuel
km

g COE kg CO kg fuel kg CO
kg fuel

 = ⋅ = 
 

 
= ⋅ = 

 

 

 

(9) 

 

and  for the optimized case are (see tables 1 and 3): 

( )

( ) 2
2 _ 2 2

0.08 292340 23387

3140 23387 73436

TOT

CO TOT

kg fuelFC kg km kg fuel
km

g COE kg CO kg fuel kg CO
kg fuel

 = ⋅ = 
 

 
= ⋅ = 

 

 

 

(10) 

Now, let us suppose that the AFC factor is not fixed to the equal value 0.08 for all 
vehicles (in the optimized case), but it is different for the latter. This means that the vehicles 
in the optimized case do not have the same average fuel consumption (0.08) in kg per one km 
anymore, what is, in reality, quite possible. Contrariwise, some of them are supposed to be 
more greedy. There can be many reasons, why the AFC factor is, in fact, not equal for all 
vehicles, like: the vehicles have a different age, they are differently maintained, the driving 
styles are different, the profile of the height kilometers is different, and so on.  

Thus, let us now assume that the AFC can take (for the optimized case) three possible 
values for each vehicle: 0.08, 0.09, and 0.1. Since there are ten available vehicles, this means 
the total of 103 59049=  possible combinations (scenarios). For the latter, the total fuel 
consumption and corresponding total CO2 emissions of the entire fleet can be calculated. 
Furthermore, we suppose that the different AFC values for the fleet do not significantly affect 
the EF factor, and the latter remains equal for all vehicles (3140).  

In this context, we are interested, if the optimized 
values ( )( ) 10, 1, 2,...,3TOTFC k kg fuel k = and ( )( ) 10

2 _ 2 , 1, 2,...,3CO TOTE k kg CO k = , are still lower 
than the values 30018.56 kg and 294257.3 kg CO , which are belonging to the un-optimized 
case(with less greedy vehicles all having AFCs equal 0.08) (see (9)), thus irrespective of 
distributions of the AFCs of the vehicles inside each optimized scenario.  

The idea about the different optimized scenarios with respect to the different 
combinations of AFC distributions of the vehicles is illustrated in table 4. The first (shaded) 
row corresponds to the best optimized scenario (see (10)) since all the AFCs are equal to the 
smallest value of 0.08. If we move forward across the scenarios in table 4, the AFC values are 
gradually increasing for various vehicles simultaneously. By doing this, the worse optimized 
scenarios are expected ( ( )TOTFC k and ( )2 _CO TOTE k are bigger, i.e., the vehicles become 
greedier) since the joint average fuel consumption of the entire fleet is rising. We also expect 
that in the case of the last optimized scenario (59049th row), we have reached the worst 
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conditions about the average fuel consumption, since all the vehicles have the biggest AFC 
value 0.1. Nevertheless, we still hope, that even in this worst optimized scenario with the 
greediest vehicles, the situation is still better than it was in the un-optimized case (with a less 
greedy fleet possessing the vehicles all having AFCs equal to 0.08).    

Serial  

number of 
optimized 
scenario(k) 

AFC for 
vehicle 
1[kg/km] 

AFC for 
vehicle 
2[kg/km] 

AFC for 
vehicle 
3[kg/km] 

… 
AFC for 
vehicle 
8[kg/km] 

AFC for 
vehicle 
9[kg/km] 

AFC for 
vehicle 
10[kg/km] 

1 0.08 0,08 0.08 … 0.08 0.08 0.08 

2 0,08 0,08 0.08 … 0.08 0.08 0.09 

3 0,08 0,08 0.08 … 0.08 0.09 0.08 

4 0,08 0,08 0.08 … 0.08 0.09 0.09 

… … … … … … … … 

… … … … … … … … 

59048 0,1 0,1 0.1 … 0.1 0.1 0.09 

59049 0.1 0,1 0.1 … 0.1 0.1 0.1 

Table 4: The different optimized scenarios with respect to the different combinations of the 
AFC distributions of the vehicles 

Naturally, when the index k is increasing in table 4, the total fuel consumption  
( )( )TOTFC k kg is also changing and so is the total value of CO2 

emissions ( )( )2 _ 2CO TOTE k kg CO . Mathematically, on the basis of expressions (5) and (8), this 
can be written in the form as shown in expression (11) given below. Here, some additional 
emulated normally distributedrandom noise ( ) ( )20,k N εε σ∈ (with a variance 2

εσ having 
some predefined value) that disturbes the AFC variable has also been added in order to move 
us closer to the reality. By applying the noise, all the variables become the random variables 
with a stochastic nature, and we can write: 

 

( )

( )( ) ( ) ( )( )

( )

( ) { } ( )

10
10

1

, :

, , 1, 2,...,3

:

, 0.08,0.09,0.1

TOT
j

Fuel Consumption total all vans for k th optimized scenario

kg fuelFC k kg fuel AFC k j VMT j km k
km

where Average Fuel Consumption for van j and scenario k is

kg fuelAFC k j k
km

ε

=

− −

 = ⋅ = 
 

 = + 
 

∑

( ) ( )

( )

( )( ) ( )( )

10

2

2

102
2 _ 2

, 1, 2,...,10, 1,2,...,3

0,

, :

3140 , 1,2,...,3CO TOT TOT

j k

k N

and
CO emissions total all vans for k th optimized scenario

g COE k kg CO FC k kg fuel k
kg fuel

εε σ

= =

∈

− −

 
= ⋅ = 

 

 

 

 

 

 

 

(11) 
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Just explained the principle of playing of optimized scenarios can also be presented 
graphically, as it is shown in figure 19 (ALGORITHM 4 from figure 10). 
 

 

Figure 19: ALGORITHM 4for the playing of optimized scenarios with respect to variations 
of the AFCs of the vehicles’ fleet  (AFCs can take three possible values for each vehicle: 
0.08, 0.09, and 0.1, resulting in 103 59049=  possible combinations) 

Figure 20 shows two histograms with respect to all 59049 possible combinations of 
the optimized scenarios, which are presented in a simplified form with only 30 bins. The first 
one is related to the calculated total fuel consumptions ( )( ) 3, 1, 2,...,10TOTFC k kg fuel k = of 
all vehicles, while the second is related to the total CO2 
emissions ( )( ) 3

2 _ 2 , 1, 2,...,10CO TOTE k kg CO k = of all vehicles. From figure 20 it is evident, 
that both distributions have all values below the values of the unoptimized case since both 
optimized histograms are positioned left from the lines A and B (unoptimized case).  It can 
also be seen, that even in the case of worst optimized scenario (all ACFs equal 0.1), better 
results were achieved for ( )TOTFC kg fuel and ( )2 _ 2CO TOTE kg CO (29234 kg of fuel and 
91794 kg of CO2)  than it was for the un-optimized case with all ACFs equal 0.08 (30019 kg 
of fuel and 94257 kg of CO2). Thus, in the case of the worst optimized scenario, the decrease 
in CO2 emissions with respect to the un-optimized case is (94257 – 91794) tonnes = 2.463 
tonnes (2.613% drop in pollution).  
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Bothrandom variables 
( )( ) 3, 1, 2,...,10TOTFC k kg fuel k = and ( )( ) 3

2 _ 2 , 1, 2,...,10CO TOTE k kg CO k = are 
approximately normally distributed. This is confirmed by two statistical tests, i.e., the Jarque-
Berra and Shapiro-Wilks test, 
whilewealsohaveadequatevaluesforskewnessandkurtosis.Themathematicalexpectations (mean 
values) are: ( )( ) 26310TOTE FC k kg fuel kg=   ; ( )( )2 _ 2 82608CO TOTE E k kg CO kg  =  . Since 
all values of both optimized histograms are lower than the lines A and B for the un optimized 
case, there is a strong belief (likelihood) that the emissions for optimized scenarios will 
always be lower than the ones for the un optimized case.     

From just described findings we can conclude that the optimization of VMT was 
indeed very efficient.Namely, we had managed to significantly reduce the total CO2 
emissions even for the cases, when the combinations of average fuel consumptions of the 
fleet were quite significant and intentionally emulated as bigger than in the caseof normal 
conditions.  

 

a)  

b)  
Figure 20: Histograms of all 59049 possible combinations of the optimized scenarios: a) for  

( )( ) 3, 1, 2,...,10TOTFC k kg fuel k =  ; b) for ( )( ) 3
2 _ 2 , 1, 2,...,10CO TOTE k kg CO k =  
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Conclusion 
The paper addressed the problem of reduction of GHG emissions, particularly those 

related to the CO2 in road transport. Among several different approaches, the concept of 
VMT reduction is chosen in order to decrease CO2 emissions. In order to achieve this goal as 
much effectively as possible, the heuristic optimization approach combined with the 3D GIS 
technology has been applied and tested for the case of School Bus Routing Problem in the 
municipality of Laško.  

The conducted approach consists of four stages: the initial road data reduction, the 
optimal allocation of bus stops, the design of optimal driving routes, driving schedules and 
driving fleet, and finally,  the playing of scenarios for different AFC factors of the vehicles in 
the optimized case. When these stages are finished, the total VMTs for every individual 
vehicle and for the entire fleet are calculated for the optimized simulated case. The latter are 
then compared to the actual un-optimized VMTs, obtained from the municipal administration 
for the addressed reference school year. 

 

Moreover, for both cases, un-optimized and optimized, the CO2 emissions are 
estimated based on the given total distances travelled by the vehicles. For the calculation of 
CO2, two methods are applied, the emissions’ factor method, and the fuel consumption 
method. The innovative algorithm for playing the different scenarios for average fuel 
consumption of the vehicles of transport fleet is also developed for the optimized case. It is 
based on the fuel consumption method and is used for changing the distribution of the AFCs 
of the vehicles. As a consequence of playing of optimized scenarios, the total fuel 
consumption and related total CO2 emissions of the driving fleet are also changed in each 
scenario. The results of all optimized scenarios are then compared to the results of the un-
optimized case.    

The achieved results show the significant reduction of the amount of VMT and 
consequently the amount of CO2 emissions, irrespective of the method for the calculation of 
emissions. By application of the used approach, 22% of kilometres every year would be 
saved if we have applied an optimization approach. Consequently, the significant reduction of 
CO2 emissions would also be achieved. On the one hand, the emissions’ factor method shows 
the decrease in the quantity of 19.2 tonnes of emissions per year (22.3% decrease), while the 
fuel consumption method shows the decrease in the quantity of 20,8 tonnes of emissions per 
year (22.08% decrease). 

Just mentioned decrease corresponds to the optimized situation when all the vehicles 
have the smallest AFC with the value of 0.08. In all other optimized scenarios, when the 
AFCs of individual vehicles can be bigger than 0.08, the decrease in CO2 emissions is not so 
obvious. However, despite this, all of these scenarios still lead to significantly lower values of 
CO2 emissions, if they are compared with emissions in the un-optimized case. Thus, even in 
the case of the worst optimized scenario, when all the vehicles have AFCs set to the biggest 
value 0.1 and are the greediest, the decrease is 2.463 tonnes per year (2.613% drop in 
pollution), if compared with the un-optimized case and less greedy vehicles with AFCs equal 
to 0.08.   

The paper is believed to contribute in the following ways. Firstly, it is shown that the 
reduction of the VMT using the applied heuristic optimization approach can be an important 
alternative to specific other, often used approaches to reduce the CO2 emissions in road 
transport, like alternative technologies or driving behaviour changes. Secondly, it is also 
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shown that even in the case of quite high AFCs of the vehicles, which are reasonably beyond 
normal conditions, the optimization can still provide the better results than in the case of less 
greedy vehicles under non-optimal conditions. Furthermore, the developed algorithm for 
playing the different scenarios for vehicles’ average fuel consumption might have represented 
another unique contribution. Also, the use of the 3D GIS data in the optimization procedure 
might have been another possible contribution. Since the achieved results are promising, we 
believe that it would be worthy of continuing with research in the direction of further 
developing of algorithms presented in this paper.  Finally, from a practical point of view, the 
entire optimization mechanism as a part of a decision support system is successfully running 
in the observed municipality for several years already, while the cost savings are significant.   
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